中国·必发-www.7790.com|集团官网·App Station

教师信息

梁亮 教授

发布者:李鹏飞发布时间:2023-12-05浏览次数:1540


梁亮,博士,教授,硕士生导师,江苏师范大学7790必发集团app副院长,江苏省“333高层次人才培养工程”培养对象,美国乔治美森大学访问学者。主要从环境遥感方面的研究,近年来主持国家自然科学基金、科技部中欧科技合作“龙计划”项目、江苏省自然科学基金、徐州市重点研发计划等项目,参与国家财政专项、国家科技支撑计划等课题多项,在Remote Sensing ofEnvironment等国内外权威刊物发表论文60余篇,被引2000余次。曾获中国精品科技期刊顶尖学术论文奖、全国多媒体大赛一等奖、江苏省优秀论文指导教师、江苏青年地理科技奖、江苏省青年遥感与地理信息科技奖等奖项,目前担任科技部遥感中心(GEO中国秘书处)咨询专家,中国地理信息产业协会教育工作委员会委员,Remote Sensing杂志主题编辑以及RSE、IEEE TGRS与IEEE J-STAR等多个杂志的审稿人。

近期主持的主要研究项目

1.国家自然科学基金面上项目,面向城市高异质性地表的植被碳汇遥感估算研究,主持;

2. 科技部中欧科技合作龙计划项目Utilizing Sino-European Earth Observation Data towards Agro-Ecosystem Health Diagnosis and Sustainable Agriculture”,主持(PI);

3. 国家自然科学基金青年项目,小麦矿物粉尘胁迫的高光谱响应机理与诊断方法研究,主持;

4. 江苏省自然科学基金面上项目,多源遥感数据支持下的城市植被碳汇估算方法研究,主持;

5. 江苏省自然科学基金青年项目,小麦粉尘胁迫的高光谱遥感探测机理与方法研究,主持;

6. 徐州市碳达峰碳中和研究专项,“星--地”协同的徐州市碳汇能力估算与模拟预测,主持;

7. 徐州市重点研发计划,城市植被碳汇估算关键技术研究,主持;

8. 国家重点实验室开放性基金项目,基于多源遥感数据的城市植被碳汇估算,主持;

9. 科技部国家遥感中心项目,全球生态环境遥感监测年度报告综合分析,主持;

10. 中国博士后基金,作物水氮胁迫效应的高光谱探测,主持;

11. 江苏省高校自然科学基金,小麦粉尘污染胁迫效应的高光谱探测,主持;

12. 江苏师范大学优秀教师支持项目,小麦水肥胁迫高光谱探测研究,主持。

近期主要论著(第一或通讯作者)

[1] Liang Liang*, Qianjie Wang, Siyi Qiu, et al. NEP Estimation of Terrestrial Ecosystems in China Using an Improved CASA Model and Soil Respiration Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 10203-10215.

[2] Wang, Qianjie, Liang Liang*, Shuguo Wang, et al. 2023.  Insights into Spatiotemporal Variations in the NPP of Terrestrial Vegetation in Africa from 1981 to 2018.  Remote Sensing, 2023, 15(11): 2748.

[3] Siyi Qiu, Liang Liang*, Qianjie Wang, et al. Estimation of European Terrestrial Ecosystem NEP Based on an Improved CASA Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1244-1255.

[4] Liang Liang*, Di Geng, Juan Yan, et al. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sensing, 2022, 14(8):1902(1-23).

[5] Liang, Liang*, Siyi Qiu, Juan Yan, et al. VCI-Based Analysis on Spatiotemporal Variations of Spring Drought in China. International Journal of Environmental Research and Public Health, 2021; 18(15):7967.

[6] Liang Liang*, Di Geng, Juan Yan, et al. Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method. Remote Sensing, 2020, 1221):3534(1-27).

[7] Liang Liang*, Ting Huang, Liping Di, et al. Influence of Different Bandwidths on LAI Estimation Using Vegetation Indices. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1494-1520.

[8] Liang Liang*, Liping Di, Ting Huang, et al. Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm. Remote Sensing, 2018, 10(12): 1940(1-16).

[9] Liang, Liang*, Qin Sun, Xiang Luo, et al. Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere, 2017, 8(8):e01919.

[10] Liang Liang*,  Zhihao Qin, Shuhe Zhao, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method, International Journal of Remote Sensing, 2016, 37(13): 2923-2949.

[11] Liang Liang*, Liping Di, Lianpeng Zhang, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 2015, 165(8): 123-134.

[12] Liang Liang*, Zhao Shuhe, Qin Zhihao, et al. Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010. Journal of Integrative Agriculture, 2014, 13(7): 1501-1508.

[13] Liang Liang*, Xiang Luo, Zhixiao Liu, et al. Habitat selection and prediction of the spatial distribution of the Chinese horseshoe bat (R. sinicus) in the Wuling Mountains[J]. Environmental Monitoring and Assessment, 2019, 191(4): 1-15.

[14] Xiang Luo, Liang Liang*, Zhixiao Liu, et al. Habitat selection and prediction of the spatial distribution of the Chinese horseshoe bat (R. sinicus) in the Wuling Mountains[J]. Polish Journal of Environmental Studies, 2020, 29 (2): 1263-1273.

[15] Xiaojin Qian, Liang Liang*, Qiu Shen, et al. Drought trends based on the VCI and its correlation with climate factors in the agricultural areas of China from 1982 to 2010. Environmental Monitoring and Assessment, 2016, 188: 639.

[16] Qiu Shen, Liang Liang*, Xiang Luo, et al. Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010[J]. Environmental Monitoring and Assessment, 2017, 189: 471.

[17] 黄婷, 梁亮*, 耿笛, . 波段宽度对利用植被指数估算小麦LAI的影响. 农业工程学报, 2020, 36(4): 168-177.

[18] 耿笛, 梁亮*, 黄婷, . 利用改进的CASA模型估算城市尺度NPP—以徐州城区为例. 测绘通报, 2021, (1): 78-83, 89.

[19] 刘世杰,苏舒,梁亮*,等. 基于植被状态指数的干旱化特征及气候驱动因素分析——以江苏省为例. 长江流域资源与环境, 2016, 25(12): 1927-1933.

[20] 王家慧, 梁亮*, 黄婷, . 徐州市区的土地利用变化及其生态环境效应. 水土保持通报, 2018, 38(6): 113-120.

[21] 林卉,梁亮*, 张连蓬,杜培军.基于支持向量机回归算法的小麦叶面积指数高光谱遥感反演. 农业工程学报, 2013, 29(11): 139-146.

[22] 梁亮*, 张连蓬,林卉,李春梅,杨敏华.基于导数光谱的小麦冠层叶片含水量反演.中国农业科学, 2013, 46(01): 18-29.

[23] 梁亮*, 杨敏华, 张连蓬, 林卉, 周兴东. 基于SVR算法的小麦冠层叶绿素含量高光谱反演. 农业工程学报, 2012, 28(20): 162-171.

[24] 梁亮*,杨敏华,邓凯东,张连蓬,林卉,刘志霄.一种估测小麦冠层氮含量的新高光谱指数.生态学报, 2011, 31(21): 6594-6605.

[25] 梁亮, 杨敏华, 张连蓬, 林卉. 小麦叶面积指数的高光谱反演. 光谱学与光谱分析, 2011, 31(06): 1658-1662.

[26] 梁亮, 杨敏华, 李英芳. 基于ICASVM算法的高光谱遥感影像分类. 光谱学与光谱分析, 2010, 30(10): 2724-2728.

[27] 梁亮, 杨敏华, 臧卓. 基于小波去噪与SVR的小麦冠层含氮率高光谱测定.农业工程学报, 2010, 26(12): 248-253.

[28] 梁亮, 杨敏华, 臧卓. 利用可见/近红外光谱测定小麦叶面积指数的改进研究. 激光与红外, 2010, 40(11): 1205-1210.

[29] 梁亮, 刘志霄, 杨敏华, 等.基于可见/近红外反射光谱的稻米品种与真伪鉴别. 红外与毫米波学报, 2009, 28(5): 353-356

主要研究方向: 生态环境遥感,包括植被碳汇遥感估算、植被理化参量反演以及植被时空变化遥感分析等。

联系方式:liang_rs@jsnu.edu.cn;  liangliang198119@163.com



Copyright © 2007-2018 江苏师范大学7790必发集团app 版权所有